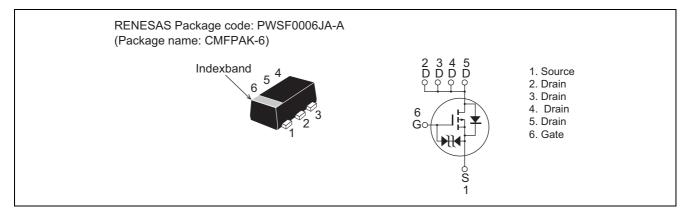


HAT1091C


Silicon P Channel MOS FET Power Switching

> REJ03G1229-0400 Rev.4.00 Jun. 13, 2005

Features

- Low on-resistance $R_{DS(on)} = 134 \text{ m}\Omega \text{ typ.} (at V_{GS} = -4.5 \text{ V})$
- Low drive current.
- 2.5 V gate drive devices.
- High density mounting

Outline

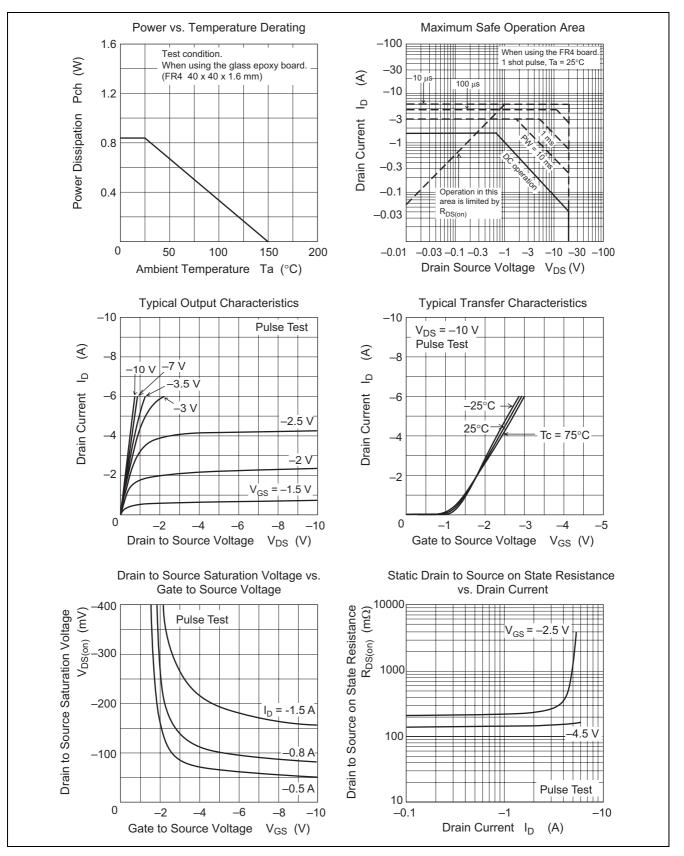
Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

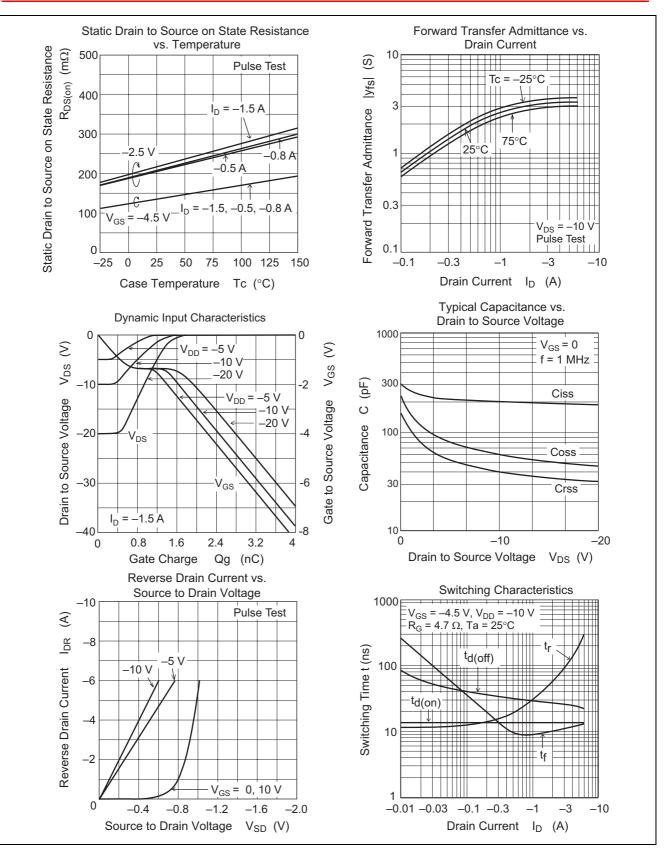
Item	Symbol	Ratings	Unit
Drain to Source voltage	V _{DSS}	-20	V
Gate to Source voltage	V _{GSS}	±12	V
Drain current	ID	-1.5	A
Drain peak current	I _D (pulse) ^{Note1}	-6	A
Body - Drain diode reverse drain current	I _{DR}	-1.5	A
Channel dissipation	Pch ^{Note 2}	830	mW
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	۵°

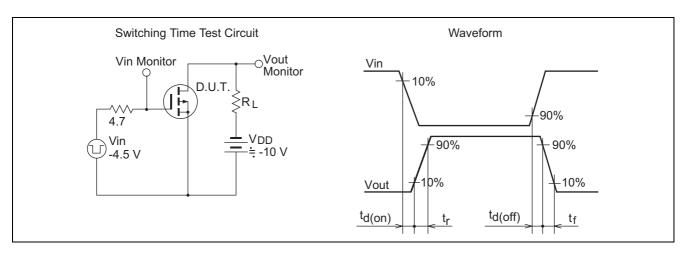
Notes 1. $PW \le 10 \ \mu s$, duty cycle $\le 1\%$

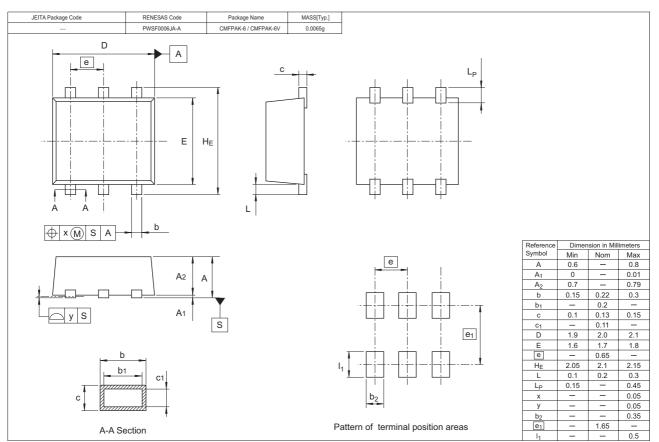
2. When using the glass epoxy board. (FR4 40 \times 40 \times 1.6mm), Ta = 25 $^{\circ}\text{C}$


Electrical Characteristics

						$(Ta = 25^{\circ}C)$
ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain to Source breakdown voltage	V _{(BR)DSS}	-20	—	_	V	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to Source breakdown voltage	V _{(BR)GSS}	±12	—	_	V	$I_{G} = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to Source leakage current	I _{GSS}	_	_	±10	μΑ	$V_{GS} = \pm 10 \text{ V}, V_{DS} = 0$
Drain to Source leakage current	I _{DSS}	_	_	-1	μΑ	$V_{DS} = -20 V, V_{GS} = 0$
Gate to Source cutoff voltage	V _{GS(th)}	-0.4	—	-1.4	V	$I_D = -1 \text{ mA}, V_{DS} = -10 \text{ V}^{\text{Note3}}$
Drain to Source on state resistance	R _{DS(on)}	_	134	175	mΩ	$I_D = -0.8 \text{ A}, V_{GS} = -4.5 \text{ V}^{\text{Note3}}$
		_	205	287	mΩ	$I_D = -0.7 \text{ A}, V_{GS} = -2.5 \text{ V}^{\text{Note3}}$
Forward transfer admittance	y _{fs}	1.5	2.3		S	$I_D = -0.8 \text{ A}, V_{DS} = -10 \text{ V}^{\text{Note3}}$
Input capacitance	Ciss	_	200		pF	$V_{DS} = -10 V, V_{GS} = 0,$
Output capacitance	Coss	_	60		pF	f = 1 MHz
Reverse transfer capacitance	Crss	—	40		pF	
Total gate charge	Qg	_	2.6	_	nC	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_D = -1.5 \text{ A}$
Gate to Source charge	Qgs	_	0.7	_	nC	
Gate to Drain charge	Qgd	_	0.7	_	nC	
Turn - on delay time	t _{d(on)}	_	13	_	ns	$\label{eq:VDS} \begin{array}{l} V_{DS} = -10 \ V, \ V_{GS} = -4.5 \ V, \\ I_D = -0.8 \ A, \ R_L = 12.5 \ \Omega, \\ R_g = 4.7 \ \Omega \end{array}$
Rise time	tr	_	26	_	ns	
Turn - off delay time	t _{d(off)}	_	30	_	ns	
Fall time	t _f	_	9	_	ns	
Body - Drain diode forward voltage	V _{DF}	_	-0.85	-1.1	V	$I_F = -1.5 \text{ A}, V_{GS} = 0$


Notes: 3. Pulse test


Main Characteristics



RENESAS

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
HAT1091C-EL-E	3000 pcs	Taping

Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. ar a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information before making a final decision on the applicability of the information and products. Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information actual system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstanc

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com